
Unicode Support - Migration Procedure

This document does not belong to the Valuemation product documentation. USU makes no warranty that this additional information is
working with specific software versions or in specific customer environments. The decision if and how to use this information is solely up to
the customer.

Die USU AG stellt dem Kunden neben der Produktdokumentation diese zusätzlichen Informationen als Service-Leistung zur Verfügung.
USU übernimmt keinerlei Gewährleistung dafür, dass diese zusätzlichen Informationen an die jeweils aktuelle Software in der
Einsatzumgebung beim Kunden angepasst sind und die erwünschten Ergebnisse erzielen. Die Entscheidung darüber, ob und in welcher
Form der Kunde diese Zusatzinformationen nutzt, liegt daher allein bei ihm. Mit Ausnahme der gesetzlichen Haftung für Vorsatz ist jede
Haftung der USU im Zusammenhang mit der Nutzung dieser Informationen ausgeschlossen

Copyright und geistiges Eigentum für die in dieser Unterlage dargestellten und beschriebenen Methoden und Abbildungen liegen bei der
USU AG, 71696 Möglingen. Vervielfältigung und Verwendung sind nur mit vollständiger Quellenangabe zulässig. Eine wirtschaftliche
Verwendung, insbesondere Erstellung und Verkauf von Software, Arbeitsblättern oder sonstigen Hilfsmitteln ist nur mit Zustimmung der
USU AG möglich.

(c) by USU AG

This document describes the steps that are necessary to take in order to make it possible to use languages with special characters in Valuemation (e.g.

Chinese, Arabic etc.). The currently supported languages use Latin characters (e.g. German, English, Italian) and even those characters differ slightly

language from language (e.g. umlauts in German language - e.g. ö) which require the use of a specific code page and collation in the database which

makes it difficult to work with strings containing Latin characters that are part of another code page. The Unicode deals with the problem.

In the document we will show how to add the Chinese language but adding any other language would be very similar.

http://www.unicode.org/standard/WhatIsUnicode.html

Adding a new language

To add a new language to Valuemation, it is necessary to create a new main parameter and add a new icon with the country flag.

 The path of the parameter is languageDefinition and the value is a combination of a Java locale (language code and country code) and name of

the language which will appear in the Language menu, e.g. zh_CN_Chinese. Note that it is very important to use the correct Java locale because it

influences also the format of numbers and dates/times. The new_language.sql contains an insert statement which inserts this new main parameter.

 The country flag needs to be an icon in the GIF format, approximately 20x11 pixels in size and the name has to be flag_<locale>.gif - e.g.

flag_zh_CN.gif. The icon than needs to be placed in the images/country directory.

Creating translations for the new language

The first step is to populate the 3 translation tables (AMT_TRANSLATION, AMT_BOTRANSLATION, AMT_SIDEBARTRANS) with data copied

from the English language – all you need to do is to execute the new_language.sql SQL script.

Translations for the new language must be created manually. What needs to be translated:

 names of object types and attributes (do this in the Translation Editor)

 names of valueset items (this can be done in Valueset Customizer for each valueset but it will be easier to do this in the normal editor from the

catalog Translations of Application Text – just filter the catalog by Base Name = valueset/ValueSetmap)

 some translations of application text (do it in the catalog Translations of Application Text), esp.

o messages (info, error, warning) presented to the end user (messages/Messages)

o names of actions (including . tooltips) – (actions/Actionnames)

o

 translations of sidebar catalogs (do this in the Catalog Customizer on the Translations tab for each catalog)

http://download.oracle.com/javase/1.4.2/docs/guide/intl/locale.doc.html

Fonts

In order to display languages like Chinese in Valuemation rich client correctly, it is necessary to use one of the 5 standard Java fonts with full Unicode

support – that is Dialog, DialogInput , Monospaced, Serif, Sans-Serif. Until VM 4.2, the default font was Arial, which doesn’t contain Chinese

characters. In VM 4.2, the default font has been changed to Dialog. However, the font setting is user-dependent (it is in the User Settings) so it is very

likely that some Valuemation users already use an incorrect font (it is stored as a main parameter). Therefore, it is recommended to delete the user main

parameters for fonts so that all users use the default font Dialog. The new_language.sql contains a DELETE statement which deletes those main

parameters. Of course, each user can again select the font that they like (in User Settings/Representation/Font-Background) but if they decide to use a

font different than the 5 mentioned fonts, they should make sure the font can display the language that they use – this can be tested easily by writing

some sample text in the text area below the font selector. Note that since VM 4.2, there is only one font selector (not two) which makes it easier to

change the font and keep the font consistent throughout the GUI.

Fonts in Reports

PDF reports

If you want to generate PDF reports containing Chinese characters (when the language is switched to Chinese or the data contains Chinese strings), you

need to change the font in the Report Template:

PDF documents use their own fonts (independent of the font settings in User Settings). There are 3 built-in fonts (Helvetica, Courier, Times-Roman) that

each PDF reader has to be able to render no matter which OS is used and no matter which fonts are installed in the OS. However, these fonts contain

only Latin characters, but not Chinese for example. Therefore, you need to choose one of the special Asian fonts (depending on the language), e.g.

STSong for simplified Chinese. When the PDF is opened in a PDF viewer, the viewer detects that an Asian font is used and requests a download of the

font (only the very first time). After confirmation, the PDF is shown:

Another alternative is the use of the Arial Unicode MS font (from Microsoft), which contains ALL characters (of all languages including Asian

languages).

Since the font can display text in mixed languages (German+Czech+Arabic+Japanese for instance) it is ideal for multi-language environments. Notice

the field showing Hallo world in several languages:

However, the font is not free (it comes with MS Office if you also install additional language support, otherwise it is $100 for workstation use; the

license for enterprises, web developers, for hardware & software redistribution or server installations needs to be enquired here. Therefore, the font is

http://www.microsoft.com/typography/fonts/font.aspx?FMID=1081
http://www.ascendercorp.com/contact/

not distributed with VM so it's up to the customer to get the font and install it if he wants to use it. Another (minor) disadvantage is that Asian characters

don't look as nice in this font as in the special Asian fonts (the width of the strokes is constant).

 In fact, it also possible to use any other font - you just have to add a new value to the ReportTemplate.FontName valueset with the file name of the font

and the encoding - e.g. Arial.ttf/cp1250.

 If you want to use the Arial Unicode MS font or any other TrueType font, you need to copy it to the root of Valuemation directory OR, leave it where it

is (e.g. in C:\Windows\Fonts) but set the system property fontdirectory pointing to this directory,

e.g. –Dfontdirectory= C:\Windows\Fonts.

Old (deprecated) internal reports

Internal reports are deprecated and should not be used in the first place, but in reality, they will still be used for some time before they get phased out.

Internal reports show Chinese characters correctly only if the correct font is set for all texts and table columns in the report (it has to be either Dialog,

Monospaced,...see section Fonts).

The default template report, used when printing catalogs, usually contains only one table with no columns. Optionally, the table contains the Row

Number column, in order to set various properties for the column, most importantly fonts. If this is the case, the font used for the column header and the

column data needs to be one of the 5 standard fonts (this has to be changed by the customer).

If the default template report also contains any fixed texts (header/footer), it must be checked that the correct font is used and if not, it needs to be

changed (again, by the customer).

The correct font needs to be set also in other reports, which contain some texts and/or tables with particular columns. But, in reality it won't be necessary

to change the fonts but to actually create new reports because the current reports contain hard coded English/German strings (usually names of attributes

and titles) so they won't be used by Chinese customers.

Database

In order to make it possible to store and read strings containing other than Latin-based characters, it is necessary to install the database with the Unicode

character set (if it’s possible) or to change the data type of some character columns to a Unicode data type. This is database vendor specific, i.e. it is done

differently on different database platforms.

Oracle

In general, Oracle has very good Unicode support – all that is needed is to select the Unicode database character set UTF-8 (called AL32UTF8 by Oracle)

when creating a new database:

Valuemation schema then needs to be created in this database using installation scripts.

Note: Oracle also supports Unicode data types (NVARCHAR2, NCHAR, NCLOB). This could be useful if you need to store Unicode characters only

in new columns or new tables (added by the customer). However, if you want all character columns to support Unicode, using the UTF-8 character set is

a much better and easier option.

If you have an existing Valuemation schema in a database that does not use the UTF-8 character set, then you need to

 export the Valuemation schema from the SOURCE database.

 if needed, create a new database with the UTF-8 character set (e.g. using the Database Configuration Assistant – see the screenshot above). This

is the TARGET database.

 import the Valuemation schema into the TARGET database

It is important to realize that in UTF-8 database, one character may need more than 1 byte for storage (1 for ASCII characters, 2 for most other characters

(e.g. accented characters), 3 for Asian characters, 4 for supplementary characters). Therefore the migration from single-byte character set to multi-byte

character set may result in data truncation! Migrating from one database character set to another is a complex matter - it is necessary to perform

additional steps that are explained in detail on this page.

Below you’ll find a simplified version, which applies when migrating from a single-byte character set to UTF-8 :

Make sure you use the latest hotfix because the supporting tool in VM Console has been added only recently.

The following steps need to be done on the SOURCE database (with single-byte character set)

1) scan data to determine which columns need to be enlarged. Use the Oracle CSSCAN utility (see this page for detailed information)

a. execute the csminst.sql script, which can be found in the Oracle installation directory. This script creates a DB schema CSMIG needed

to collect the statistics. Run sqlplus from the command line:

sqlplus sys/manager@orcl as sysdba

@ csminst.sql

b. run the CSSCAN utility from the command line:

 csscan 'sys/manager@orcl as sysdba'

 When prompted, use these options

- 1) full database 2) user 3) table 4) column: 2

- new database character set name: AL32UTF8

- enter user name to scan: <name of the Valuemation schema>

otherwise use default options

The result of the scan will be written into 3 files. The relevant files are scan.txt and scan.err. The scan.txt will most likely contain

something like this:

http://docs.oracle.com/cd/B19306_01/server.102/b14225/ch11charsetmig.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14225/ch12scanner.htm

You will very likely see some positive numbers if the Truncation column. If so, some columns will need to be enlarged before exporting the schema.

Note: you should see only zeros in the Lossy column as the UTF-8 character set is a super set of all common single-byte character sets.

2) Generate DDL scripts using the VM Console:

- copy the scan.txt and scan.err files to the VM directory

- open VM Console

- type 'analyse scan files' and press Enter

- after a while, you should see 2 files in the VM directory:

 source.sql – this files contains SQL statements that prepare the schema on the SOURCE database before it can be exported

(essentially, it enlarges some columns and/or changes the data type of some column to CLOB). It should be executed on the

SOURCE database.

 target.sql - this files contains SQL statements that change the column type back to the original data type and length, but with the

CHAR semantics, rebuilds some indexes and recompiles views. It should be executed on the TARGET database.

3) Execute the script source.sql on the Valuemation schema. You can do this directly in the VM Console by pressing Ctrl+F9 on the first line of the

script.

4) Optionally, run the CSSCANNER utility again. Check the output in scan.txt – the column Truncation must contain only zeroes.

5) Export the Valuemation schema from the SOURCE database. Use the EXP or EXPDP utility to do so.

The following steps need to be done on the TARGET database (with UTF-8 character set):

6) execute ALTER SYSTEM SET BLANK_TRIMMING = TRUE SCOPE=SPFILE; Then restart the database server.

7) import the exported Valuemation schema created in step 5. Use the IMP or IMPDP utility to do so. You should see no exceptions related to

exceeded data length when importing the schema!

8) execute the script target.sql created in step 2 on the Valuemation schema.

9) add system property to admin.bat on the line containing S3Application: -DcheckViews=true

10) run VM and start Metamodel Check for ‘Object Types’ with the repair option. This will detect the changed column length in bytes. Apply

changes.

In VM 4.4 and older, it is then necessary to select the UTF-8 code page in the Global Settings / Customizer Settings to let Valuemation know which code

page is used by the database so that Valuemation can correctly check string lengths:

For more information on the String Length Check, read the document String Length Check.doc

DB2

The only option on DB2 is to create the database using the Unicode (UTF-8) code page – see this for information how to create such a database.

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/t0004617.htm

SQL Server

SQL Server does not support Unicode character set on instance nor database level. It only supports Unicode data types.

The character data types have to be changed to Unicode data types:

 char(n) → nchar(n) - fixed width string. n=max 4000 characters

 varchar(n) → nvarchar(n) - variable width string. n=max 4000 characters (or (max)=2^30)

 text → nvarchar(max) (text data type is deprecated)

These data types use UCS-2 encoding, i.e. 1 character = 2 bytes

This needs to be done for most character columns in all or some generic tables (AMA_, AMS_, etc..) using a set of ALTER TABLE statements.

e.g.:

alter table AMA_SYSTEM alter column SHORTTEXT nvarchar(254)

go

alter table AMA_SYSTEM alter column NAME nvarchar(254)

go

......

.....

.....

But this is easier said than done. First of all, how do you create an DDL script with hundreds of similar DDL statements? The other problem is that the

ALTER TABLE statement will fail if there is an index on the column or the column is constrained by any type of DB constraint (check/ default, foreign

key, primary key). So what needs to be done is to drop all the indexes and constraints for the relevant columns and after changing the column data type,

recreate those indexes and constraints. This makes creating such an DDL script even more difficult. You are free to write it manually or use any database

tool to assist you in creating such a script.

But you can also use the Valuemation Console and its new feature, ‘SQL Templates’, to create the migration script very easily!

Valuemation Console is a tool for developers, customizers, consultants and administrators (not for end users). It is used primarily for logging various

events, most importantly SQL statements. But it can also be used to execute SQL/DDL statements and inspect or modify data in the DB. If you are not

familiar with the Console, you should read the documentation first.

Now, let’s look at the SQL Templates feature, which you can use to generate multiple SQL/DDL statements based on a template.

e.g. to select count from all tables, type

select count(*) from $TABLES$;

in the Console and press Ctrl+Shift+G to generate the SQL statements:

select count(*) from AMA_ACCESSADMIN;

select count(*) from AMA_ACCESSLEVEL;

select count(*) from AMA_ACTIVITYCOST;

select count(*) from AMA_ATTACH_HOLDER;

...

....

$TABLES$ is a template tag that is replaced in each SQL statement by the table name. There are other template tags ($COLUMNS$, $SCHEMAS$,

$INDEXES$, $CONSTRAINTS$...).

Template tags can also be parameterized by using regular expressions. E.g. to select count from tables whose name starts with AMT_ , type:

select count(*) from $TABLES<name>AMT_.*$;

AMT_.* is a regular expression. Unfortunately, regular expressions in Java are quite complex and so the full explanation is beyond the scope of this

document. I'm going to give just very short hints:

. means any character

* means repeated 0-N times

| means OR

Useful examples:

to match one specific name, use just the name: AMA_SYSTEM

to match specific names, separate them by | : AMA_SYSTEM|AMA_COMPONENT

to match names starting with a given prefix : AMA_.*

to match names ending with a given suffix : .*_ID

to match names containing a given word : .*WORD.*

to match names except specific ones: ^(?!(USERCHG|USERCRE|DATCRE|DATCHG|CLIENT)$).*

to match names except those that start with specific prefixes: ^(?!(AMA_ |AMS_)).*

to match names except those that end with specific suffixes: ^(?!.*(_ID|_IDX)$).*

When using $ in a regular expression, it needs to be escaped (doubled) in the template! E.g.

from $TABLES<name>^(?!.*(_ID|_IDX)$$).$;

More information on Java regular expressions can be found on many online sites. On this site you can test your regular expressions.

The complete documentation on SQL templates can be found on our Wiki.

http://download.oracle.com/javase/1,5.0/docs/api/java/util/regex/Pattern.html
http://www.regexplanet.com/advanced/java/index.html

The complete migration procedure:
WARNING: It is assumed and highly recommended to try this first on a COPY of the production database, NOT ON THE PRODUCTION

DATADABSE, to test if there are any problems.

1) CHECK INDEXES
SQL Server has a maximum limit of 900 bytes in an index. For example, an index containing 2 varchar(254) columns occupies 508 bytes. Unicode data

types use UCS-2 encoding, which means that each character needs 2 bytes for storage. Thus, after converting character columns to Unicode data types,

the same index need will now occupy 1016 bytes which exceeds the limit! When recreating the index, MS SQL Management Studio reports a warning:

Warning! The maximum key length is 900 bytes. The index 'I_COMPNETINFO_2' has maximum length of 1038 bytes. For some combination

of large values, the insert/update operation will fail. The index is created but with a warning. This means that if a combination of long strings is

inserted into the column, such that it exceeds the limit in bytes, the operation will fail (e.g. inserting 2 strings of 226 characters each, which requires 902

bytes for storage).

To list such indexes, use this template:

--$TABLES<name>^(?!(AMT_|F\d\d)).*$ $INDEXES<sizeUnicode> >>900$

$INDEX.sql$

-- $INDEX.size$ --> $INDEX.sizeUnicode$

go

Copy this template to a console, select it and press Ctrl+Shift+g

You’ll get something like this:

...

Below each index you’ll see the original size in bytes and the size after the character columns in the index (except CLIENT) have been converted to

Unicode data type (this new size will be greater than 900)

For each such index, you have the following options:

a) do nothing (i.e. the index will be recreated with a warning) – if the actual data in all the char/varchar columns is always shorter than the

maximum column length, the insert/update will work just fine. But do not rely on this – before you decide for this option, you need to check the

columns in the index and if you are not sure whether the data can be really as long as the column length, check the real values in the database –

i.e. execute SELECT avg(len(<col1>)), max(len(<col1>)), avg(len(<col2>)), max(len(<col2>))... FROM <table>.

b) exclude one or more char/varchar columns in the index from converting to Unicode. This is recommended when such columns contain data,

which never contain special characters (e.g. technical data like names of object types, attributes, statuses etc. – in general data not entered by end

users).

To use this option, open the corresponding object type in the Object Type Customizer and for the column you wish not to convert to Unicode, set

the extended property UnicodeDisabled to TRUE. Then, the generated DDL script from the templates will not contain such columns (because the

template contains an expression tag with this property)

Note: the <sizeUnicode> expression tag takes this property into account.

c) shorten the length of one or more char/varchar columns. This is possible if the data in those columns are smaller than the newly set length – you

need to check this - see the select statement in option a)

d) do not recreate the index again (only if it’s NOT a unique index) – beware though, as this may negatively affect performance! If you choose this

option, then comment out the CREATE INDEX statement from the generated DDL script created in the next section.

Standard indexes:

Even the standard database contains several indexes exceeding the limit (after conversion of columns to Unicode data type). So we have analyzed such

indexes and the columns in them and chose the best option for each index. In most cases we chose option b), i.e. we set the UnicodeDisabled property

for the corresponding columns because these column contains only technical data. These extended properties are part of the customization, delivered in a

hotfix (VM 4.3.HF<XX>). This means that customers doing the migration will not have to analyze our standard indexes but only customer specific

indexes.

However, for some indexes we chose the option a). These are:

I_FACILITY

I_PAY_AUDIT_COMP

I_SYSTEM_5

I_USAGETYPE

Before proceeding with the next step, if you selected options b) or c), make the change now – i.e. b) set the extended property c) shorten column length

2) GENERATE THE DDL SCRIPTS

Paste the following templates into the Console:

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $CONSTRAINTS<type>(?!primary$$).*<column.type>varchar|char<column.name>^(?!(USERCHG|USERC

RE|DATCRE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

alter table $SCHEMA$.$TABLE$ drop constraint $CONSTRAINT$

go

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $CONSTRAINTS<type>primary<column.type>varchar|char<column.name>^(?!(USERCHG|USERCRE|DAT

CRE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

alter table $SCHEMA$.$TABLE$ drop constraint $CONSTRAINT$

go

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $INDEXES<name>^(?!PK_).*<column.type>varchar|char<column.name>^(?!(USERCHG|USERCRE|DATC

RE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

drop index $INDEX$ on $SCHEMA$.$TABLE$

go

alter table $SCHEMA$.$TABLES<name>^(?!(AMT_|F\d\d)).*$ alter column

$COLUMNS<type>varchar|char<name>^(?!(USERCHG|USERCRE|DATCRE|DATCHG|CLIENT|MANDANT)$$).*<JavaType>java.lang.String|-

<property.UnicodeDisabled>false|-$ n$COLUMN.type$($COLUMN.size$) $COLUMN.notnull$

go

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $INDEXES<name>^(?!PK_).*<column.type>varchar|char<column.name>^(?!(USERCHG|USERCRE|DATC

RE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

$INDEX.sql$

go

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $CONSTRAINTS<type>primary<column.type>varchar|char<column.name>^(?!(USERCHG|USERCRE|DAT

CRE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

$CONSTRAINT.sql$

go

--

$TABLES<name>^(?!(AMT_|F\d\d)).*$ $CONSTRAINTS<type>(?!primary$$).*<column.type>varchar|char<column.name>^(?!(USERCHG|USERC

RE|DATCRE|DATCHG|CLIENT|MANDANT)$$).*<column.JavaType>java.lang.String|-$

$CONSTRAINT.sql$

go

EXECUTE sp_refreshview '$VIEWS$'

go

--$TABLESANDVIEWS<name>^(?!(AMT_|F\d\d)).*$

update $SCHEMA$.AMT_ATTRCOLMAP set IS_UNICODE = 'Y' where COLUMNNAME =

'$COLUMNS<type>varchar|char<name>^(?!(USERCHG|USERCRE|DATCRE|DATCHG|CLIENT|MANDANT)$$).*<JavaType>java.lang.String|-

<property.UnicodeDisabled>false|-$' and exists(select 1 from $SCHEMA$.AMT_GENERICBO gb where gb.GENERICBO_ID =

AMT_ATTRCOLMAP.GENERICBO_ID and TABLENAME = '$TABLE$')

go

There are 2 template tags that need explanation:

 $TABLES<name>^(?!(AMT_|F\d\d)).*$ means: : iterate over all tables whose name does NOT starts with AMT_ and it doesn’t start with

F<digit><digit>. By specifying more prefixes, you may exclude more tables. In any case, technical tables (starting with AMT_) and tables

populated by external systems which cannot handle Unicode data types must NOT be processed!

 $COLUMNS<type>varchar|char<name>^(?!(USERCHG|USERCRE|DATCRE|DATCHG|CLIENT|MANDANT)$$).*<JavaType>java.lang.Stri

ng|-<property.UnicodeDisabled>false|-$ means: iterate over all columns whose type is varchar or char and whose name is not USERCHG,

USERCRE... and whose java type is String (or none – the column exists in the DB but it is not mapped to any attribute in VM) and which don’t

have a property UnicodeDisabled set to true (see this section for more information on this property).

Now, select each template (including the separator 'go'), one by one, and press Ctrl+Shift+G:

On separate tabs, you should get several sets of DDL statements:

 to drop some constraints

 to drop some indexes

 to change the data type of some columns

 to recreate the indexes

 to recreate the constraints

 to refresh DB views

 to update meta information (in AMT_ATTRCOLMAP) – VM needs to know that the column has a Unicode data type (nchar or nvarchar)

Now save the content of each tab to a file (copy and paste), make sure the name contains a number indicating the order!

Example:

migration1.sql

migration2.sql

migration3.sql

....

3) EXECUTE THE GENERATED DDL SCRIPTS

Now you need to execute all the generated DDL scripts in the same order. We recommend to execute them directly in the Microsoft SQL

Management Studio – simply open all the DDL scripts and execute them one by one (button Execute (F5)).

Make sure there are no errors before you proceed to another DDL script. If for any reason a constraint or an index could not be dropped, the

column data type change fill fail! In such a case, you have to resolve those problems first before proceeding otherwise you will get more errors caused

by the previous errors. Note that the DDL script that actually changes the data type takes a long time to execute (15-30 minutes) so be patient.

If you were able to execute all the DDL scripts without an error, you can combine them into one DDL script (in the same order!). This script can be then

executed on the production database.

Note: when testing, you can execute the scripts also directly in the Console – on each tab, position the cursor on the first line of the first generated script

and press Ctrl+F9. Then commit the change (F11) – for some reason this is needed!

F56 table:

This table contains incoming emails and is populated by the O-server. A later version now supports the Unicode data types. To change the data types in

this table, it is necessary to create a temporary table F56x having Unicode data types, insert data from the original F56 table to this temporary table, drop

the F56 table and rename F56x to F56. This is the complete script:

CREATE TABLE F56x (

 F56000 decimal(9) NOT NULL,

 F56001 nvarchar(12),

 F56002 decimal(9),

 F56003 nvarchar(max),

 F56004 nvarchar(256),

 F56005 datetime,

 F56006 nvarchar(256),

 F56007 nvarchar(48),

 F56008 decimal(9),

 F56009 nvarchar(24),

 F56010 nvarchar(1000),

 F56011 nvarchar(1000),

 F56012 nvarchar(2000),

 F56013 nvarchar(250),

 F56014 nvarchar(48),

 F56015 datetime,

 F56016 nvarchar(6),

 F56017 nvarchar(6),

 F56018 nvarchar(6),

 F56019 nvarchar(1),

 F56020 datetime,

 F56021 decimal(9),

 F56022 nvarchar(1),

 F56023 datetime,

 F56024 datetime,

 F56025 decimal(6),

 F56026 decimal(6),

 F56027 nvarchar(250),

 F56028 nvarchar(250),

 F56029 nvarchar(250),

 F56030 decimal(9),

 F56090 nvarchar(48),

 F56091 datetime,

 F56092 decimal(9),

 DATCRE datetime,

 DATCHG datetime,

 USERCRE varchar(254),

 USERCHG varchar(254),

 CLIENT char(6),

 CONSTRAINT PK_F56x PRIMARY KEY (F56000)

)

go

insert into dbo.F56x select * from dbo.F56

go

drop table dbo.F56

go

EXECUTE sp_rename F56x, F56

go

CREATE INDEX SK2_F56 ON dbo.F56 (

 F56001,

 F56009

)

go

4) SETTINGS

If you are using Valuemation version 4.3 or 4.4:

Make sure the sessions_MSSQL2005.properties file contains this line:

SessionName.VALUEMATION.database=%DBASE%;SelectMethod=cursor;sendStringParametersAsUnicode=true

i.e. the parameter sendStringParametersAsUnicode has to be set to true (this is actually the default value).

If you are using Valuemation version 4.5 or newer:

the parameter sendStringParametersAsUnicode should be set to false for optimal performance!

Now you should be able to store strings to database in any language (including Asian languages).

